Make your Own Volcano

You will need

  • A volcano – Talk to an art teacher about how to make a volcano out of paper mache or plaster. You can also use clay or if you’re in a hurry to make your volcano, use a mound of dirt outside.
  • A container that 35mm film comes in, and old pill bottle, a baby food jar, or similar size container.
  • Red and yellow food coloring (optional)
  • Vinegar
  • Liquid dish washing soap

What to do

  1. Go outside or prepare for some clean-up inside
  2. Put the container into the volcano at the top
  3. Add two spoonfuls of baking soda
  4. Add about a spoonful of dish soap
  5. Add about 5 drops each of the red and yellow food coloring

Now for the eruption!:
Add about an ounce of the vinegar into the container and watch what your volcano come alive.

A VOLCANO is produced over thousands of years as heat a pressure build up. That aspect of a volcano is very difficult to recreate in a home experiment. However this volcano will give you an idea of what it might look like when a volcano erupts flowing lava. This is a classic experiment in which a CHEMICAL reaction can create the appearance of a PHYSICAL volcano eruption. You should look at pictures of volcanoes to be familiar with the different types. (A SHIELD volcano, for example is the most common kind of volcano, and yet few people know about them) The reaction will bubble up and flow down the side like a real volcano (only much faster!) Look for videos of volcanoes erupting and be sure that you understand how heat and pressure work to really make volcanoes erupt.

MAKE IT AN EXPERIMENT

The project above is a DEMONSTRATION. To make it a true experiment, you can try to answer these questions:

1. Does vinegar temperature affect how fast the volcano erupts?
2. Does the shape of the volcano affect the direction the eruption travels?
3. What can be added to the “lava” to slow it down and make it more like real lava?
4. What combination of vinegar and baking soda creates the biggest eruption?

Advertisements

The Exploding Lunch Bag

You will need

  • One small (sandwich size) zip-lock bag – freezer bags work best.
  • Baking soda
  • Warm water
  • Vinegar
  • Measuring cup
  • A tissue

What to do:

  1. Go outside – or at least do this in the kitchen sink.
  2. Put 1/4 cup of pretty warm water into the bag.
  3. Add 1/2 cup of vinegar to the water in the bag.
  4. Put 3 teaspoons of baking soda into the middle of the tissue
  5. Wrap the the baking soda up in the tissue by folding the tissue around it.
  6. You will have to work fast now – partially zip the bag closed but leave enough space to add the baking soda packet. Put the tissue with the baking soda into the bag and quickly zip the bag completely closed.
  7. Put the bag in the sink or down on the ground (outside) and step back. The bag will start to expand, and expand, and if all goes well…POP!

How’s it work?

Cool huh? Nothing like a little chemistry to to add fun to a boring afternoon. What happens inside the bag is actually pretty interesting – the baking soda and the vinegar eventually mix (the tissue buys you some time to zip the bag shut) When they do mix, you create an ACID-BASE reaction and the two chemicals work together to create a gas, (carbon dioxide – the stuff we breathe out) well it turns out gasses need a lot of room and the carbon dioxide starts to fill the bag, and keeps filling the bag until the bag can no longer hold it any more and, POP! Be sure to clean up well and recycle those plastic bags…have fun!

MAKE IT AN EXPERIMENT

The project above is a DEMONSTRATION. To make it a true experiment, you can try to answer these questions:

  1. Will different temperature water affect how fast the bag inflates?
  2. What amount of baking soda creates the best reaction?
  3. Which size bag creates the fastest pop?

P.S. If you like this experiment, try the Film Canister Rocket.

Build a film canister rocket

You will need

  • One empty 35mm plastic film canister and lid. These are getting harder to find, but stores that develop film should have some. (The white canisters work much better than the black ones do.) If you have trouble finding canisters, you can get them HERE.
  • One fizzing antacid tablet (such as Alka-Seltzer – Get this from your parents)
  • Water
  • Safety goggles

What to do

  1. Put on those safety goggles and head outside – no really, when this works, that film canister really flies! If you want to try the indoor version, do not turn the canister upside down in step 5.
  2. Break the antacid tablet in half.
  3. Remove the lid from the film canister and put a teaspoon (5 ml) of water into the canister.
    Do the next 2 steps quickly
  4. Drop the tablet half into the canister and snap the cap onto the canister (make sure that it snaps on tightly.)
  5. Quickly put the canister on the ground CAP SIDE DOWN and STEP BACK at least 2 meters.
  6. About 10 seconds later, you will hear a POP! and the film canister will launch into the air!

Caution: If it does not launch, wait at least 30 second before examining the canister. Usually the cap is not on tight enough and the build up of gas leaked out.

How does it work?

There’s nothing like a little rocket science to add some excitement to the day. When you add the water it starts to dissolve the alka-seltzer tablet. This creates a gas call carbon dioxide. As the carbon dioxide is being released, it creates pressure inside the film canister. The more gas that is made, the more pressure builds up until the cap it blasted down and the rocket is blasted up. This system of thrust is how a real rocket works whether it is in outer space or here in the earth’s atmosphere. Of course, real rockets use rocket fuel. You can experiment controlling the rocket’s path by adding fins and a nose cone that you can make out of paper. If you like this experiment, try the Exploding Lunch Bag. Be safe and have fun!

MAKE IT AN EXPERIMENT

The project above is a DEMONSTRATION. To make it a true experiment, you can try to answer these questions:

  1. Does water temperature affect how fast the rocket launches?
  2. Does the size of the tablet piece affect how long it takes for the rocket to launch?
  3. Can the flight path be controlled by adding fins or a nosecone to the canister?
  4. How much water in the canister will give the highest flight?
  5. How much water will give the quickest launch?

FANTASTIC FOAMY FOUNTAIN

You will need

  • A clean 16 ounce plastic soda bottle
  • 1/2 cup 20-volume hydrogen peroxide liquid (20-volume is a 6% solution, ask an adult to get this from a beauty supply store or hair salon)
  • 1 Tablespoon (one packet) of dry yeast
  • 3 Tablespoons of warm water
  • Liquid dish washing soap
  • Food coloring
  • Small cup
  • Safety goggles

NOTE: The foam will overflow from the bottle, so be sure to do this experiment on a washable surface, or place the bottle on a tray.

What to do

  1. Hydrogen peroxide can irritate skin and eyes, so put on those safety goggles and ask an adult to carefully pour the hydrogen peroxide into the bottle.
  2. Add 8 drops of your favorite food coloring into the bottle.
  3. Add about 1 tablespoon of liquid dish soap into the bottle and swish the bottle around a bit to mix it.
  4. In a separate small cup, combine the warm water and the yeast together and mix for about 30 seconds.
  5. Now the adventure starts! Pour the yeast water mixture into the bottle (a funnel helps here) and watch the foaminess begin!

How does it work?

Foam is awesome! The foam you made is special because each tiny foam bubble is filled with oxygen. The yeast acted as a catalyst (a helper) to remove the oxygen from the hydrogen peroxide. Since it did this very fast, it created lots and lots of bubbles. Did you notice the bottle got warm. Your experiment created a reaction called an Exothermic Reaction – that means it not only created foam, it created heat! The foam produced is just water, soap, and oxygen so you can clean it up with a sponge and pour any extra liquid left in the bottle down the drain.

This experiment is sometimes called “Elephant’s Toothpaste” because it looks like toothpaste coming out of a tube, but don’t get the foam in your mouth!

Make it an experiment:

The project above is a DEMONSTRATION. To make it a true experiment, you can try to answer these questions:

  1. Does the amount of yeast change the amount of foam produced?
  2. Does the experiment work as well if you add the dry yeast without mixing it with water?
  3. Does the size of the bottle affect the amount of foam produced?

BLOBS IN A BOTTLE

You will need

  • A clean 1 liter clear soda bottle
  • 3/4 cup of water
  • Vegetable Oil
  • Fizzing tablets (such as Alka Seltzer)
  • Food coloring

What to do

  1. Pour the water into the bottle.
  2. Use a measuring cup or funnel to slowly pour the vegetable oil into the bottle until it’s almost full. You may have to wait a few minutes for the oil and water separate.
  3. Add 10 drops of food coloring to the bottle (we like red, but any color will look great.) The drops will pass through the oil and then mix with the water below.
  4. Break a seltzer tablet in half and drop the half tablet into the bottle. Watch it sink to the bottom and let the blobby greatness begin!
  5. To keep the effect going, just add another tablet piece. For a true lava lamp effect, shine a flashlight through the bottom of the bottle.
easy_lava_lamp

How does it work?

To begin, the oil stays above the water because the oil is lighter than the water or, more specifically, less dense than water. The oil and water do not mix because of something called “intermolecular polarity.” That term is fun to bring up in dinner conversation. Molecular polarity basically means that water molecules are attracted to other water molecules. They get along fine, and can loosely bond together (drops.) This is similar to magnets that are attracted to each other. Oil molecules are attracted to other oil molecules, they get along fine as well. But the structures of the two molecules do not allow them to bond together. Of course, there’s a lot more fancy scientific language to describe density and molecular polarity, but maybe now you’ll at least look at that vinegrette salad dessing in a whole new way.

When you added the tablet piece, it sank to the bottom and started dissolving and creating a gas. As the gas bubbles rose, they took some of the colored water with them. When the blob of water reached the top, the gas escaped and down went the water. Cool, huh? By the way, you can store your “Blobs In A Bottle” with the cap on, and then anytime you want to bring it back to life, just add another tablet piece.

MAKE IT AN EXPERIMENT

The project above is a DEMONSTRATION. To make it a true experiment, you can try to answer these questions:

  1. Does the temperature of the water affect the reaction?
  2. Does the size of the bottle affect how many blobs are produced?
  3. Does the effect still work if the cap is put on the bottle?
  4. Does the size of the tablet pieces affect the number of blobs created?

MAKE A LEVITATING ORB!

You will need

  • 1 inch (2.5 cm) wide PVC Pipe about 24 inches (60cm) long. You can also use a regular balloon if you do not have PVC pipe.
  • Mylar tinsel for Christmas trees. There are many types of tinsel and many will not work – you should look for the thinnest and narrowest possible. The tinsel used in the video is about 1 millimeter wide. If it is much wider than that, the orb may be too heavy to levitate. (You can order the exact same from Bob by clicking HERE.)
  • A head of clean, dry hair
  • Scissors

What to do

  1. Arrange 6 strands of mylar together and tie them together in a knot at one end.
  2. Tie them together again about 6 inches (15cm) from the first knot.
  3. Cut the loose mylar strands off just past each knot.
  4. Charge the PVC pipe by rubbing it back and forth through your hair for 10 seconds.
  5. Hold the mylar orb (by the knot) above the charged pipe and let it drop and touch the pipe.
  6. It should repel away and start floating. If the tinsel keeps sticking to the pipe, the tinsel is probably not thin enough and you will need to try another kind of tinsel or order some from us. (You will usually have to “recharge” the pipe before each levitation.)

How does it work?

It is all about static charges. Similar static charges repel away from each other. When you rub the pipe in your hair you give the pipe a negative static charge. The orb is attracted to the pipe at first because the orb has a positive charge. As soon as the orb touches the pipe, it picks up a negative charge. Since the pipe is negative and the tinsel orb is now negative, they repel away from each other and the orb levitates! The orb will also take on more of a “ball” appearance when charged since all the tinsel strands are repelling away from each other. Did you notice the orb is attracted to other objects around you – including you? That is because most objects (including you) have a positive charge.

CHECK OUT MORE VIDEOS OF THE ORBS BY CLICKING HERE .

MAKE IT AN EXPERIMENT

The project above is a DEMONSTRATION. To make it a true experiment, you can try to answer these questions:

  1. Does the number of mylar strands affect how well the orb levitates?
  2. Do different materials (hair, fur, wool) build up better static charges?
  3. How long does the static charge last / how can you make it last longer?
  4. Do different widths of pipe affect the floating ability of the orb?

BUILD A FIZZ INFLATOR

You will need

  • One small empty plastic soda or water bottle
  • 1/2 cup of vinegar
  • Small balloon
  • Baking soda
  • Funnel or piece of paper

What to do

  1. Carefully pour the vinegar into the bottle.
  2. This is the tricky part: Loosen up the balloon by stretching it a few times and then use the funnel to fill it a bit more than half way with baking soda. If you don’t have a funnel you can make one using the paper and some tape.
  3. Now carefully put the neck of the balloon all the way over the neck of the bottle without letting any baking soda into the bottle.
  4. Ready? Lift the balloon up so that the baking soda falls from the balloon into the bottle and mixes with the vinegar. Watch the fizz-inflator at work!

How does it work?

The baking soda and the vinegar create an ACID-BASE reaction and the two chemicals work together to create a gas, (carbon dioxide) Gasses need a lot of room to spread out and the carbon dioxide starts to fill the bottle, and then moves into the balloon to inflate it.

MAKE IT AN EXPERIMENT

The project above is a DEMONSTRATION. To make it a true experiment, you can try to answer these questions:

  1. Does water temperature affect how fast the balloon fills up.
  2. Does the size of the bottle affect how much the balloon fills?
  3. Can the amount the balloon fills-up be controlled by the amount of vinegar or baking soda?

Science Bob

MAKE YOUR OWN ROCK CANDY

THIS EXPERIMENT REQUIRES ADULT HELP
IT DEALS WITH VERY HOT LIQUIDS
BE SMART AND BE SAFE – ONLY DO THIS WITH ADULT HELP.

You will need

  • A wooden skewer (you can also use a clean wooden chopstick)
  • A clothespin
  • 1 cup of water
  • 2-3 cups of sugar
  • A tall narrow glass or jar

What to do

  1. Clip the wooden skewer into the clothespin so that it hangs down inside the glass and is about 1 inch (2.5 cm) from the bottom of the glass. (as shown)
  2. Remove the skewer and clothespin and put them aside for now.
  3. Get a helpful adult!
  4. Pour the water into a pan and bring it to boil.
  5. Pour about 1/4 cup of sugar into the boiling water, stirring until it dissolves.
  6. Keep adding more and more sugar, each time stirring it until it dissolves, until no more will dissolve. This will take time and patience and it will take longer for the sugar to dissolve each time.Be sure you don’t give up too soon. Once no more sugar will dissolve, remove it from heat and allow it to cool for at least 20 minutes.
    NOTE: While it is cooling, some people like to dip half of the skewer in the sugar solution and then roll it in some sugar to help jump start the crystal growth. If you do this, be sure to let the skewer cool completely so that sugar crystals do not fall off when you place it back in the glass.
  7. Have your friendly ADULT carefully pour the sugar solution into the jar almost to the top. Then submerge the skewer back into the glass making sure that it is hanging straight down the middle without touching the sides.
  8. Allow the jar to fully cool and put it someplace where it will not be disturbed.
  9. Now just wait. The sugar crystals will grow over the next 3-7 days.

Want colored rock candy? Add food coloring to your sugar water and make sure sure that it is pretty dark in color for the best result.

How does it work?

When you mixed the water and sugar you made a SUPER SATURATED SOLUTION. This means that the water could only hold the sugar if both were very hot. As the water cools the sugar “comes out” of the solution back into sugar crystals on your skewer. The skewer (and sometimes the glass itself) act as a “seed” that the sugar crystals start to grow on. With some luck and patience you will have a tasty scientific treat! Enjoy!

Science Bob

A Density Experiment You Can Drink!

Density is a fascinating and sometimes tricky idea to understand. This Drink of Density will help bring home the idea of density in liquids, not to mention it looks cool when your all done, it’s tasty, and it’s even good for you – what more could you ask for in a science activity!

You will need:

  • Juices that have different density levels. (see below for a simple explanation of density) The density of a juice is often determined by how much sugar or fruit is in it – the more sugar or fruit, the more dense the juice is. Powdered and canned juices do not work well for this experiment since they are almost entirely water. You will have to do some experimentation to find juices that are colorful and give a nice display of density, and that’s half the fun.
  • A narrow glass (the more narrow it is, the easier it is to separate the density levels)
  • Eye dropper or turkey type baster.
denisy_juice

What to do:

  1. Before you begin, you can guess which juices you think will be more dense and form a hypothesis of how the levels of your Drink of Density will turn out. Check the number of ingredients, the sugar content, and the water content to help you out.
  2. In order to display your density levels, you will need to find out which of your juices are the most and least dense. Pour one of your juices into the narrow glass to fill it about 1 inch (2.5 cm) high. Fill a dropper with another juice and slowly drop it onto the inside of the glass so that it runs down the side of the glass. Watch the juice to see if it goes below or above the juice in there. (if it simply mixes with the juice and does not go above or below, it has the same density as the juice and you will need to move on to your next juice.
  3. Continue experimenting with other juices to determine which juices go to the bottom (more dense) and which ones go to the top (least dense.)
  4. Once you have the densities determined, start over with a clean glass and use the dropper for each level to create your final Drink of Density!

Note: In case you were wondering, the juices in the photo are (top) Tropicana Pomegranate-Blueberry, (middle) Tropicana Pure Premium Orange Juice, (bottom) Nature’s Promise White Grape (33 grams of sugar in 6.75 ounces!)

How Does It Work?:

The density of liquids demonstrates the the amount of “stuff” (atoms, mass) that are present in a particular volume of the juice. In other words, if you have cup with 200ml of plain water, and a cup with 200 ml of water that has lots of sugar dissolved in it, the cup of sugar water will be heavier even though they are the same volume of liquid – the invisible sugar molecules are dispersed in the water, making it heavier (more dense.)

Build A Soap Powered Model Boat

You will need:

  • A foam tray (like the kind meat comes in) or a piece of non-currogated cardboard
  • A tray, bowl, or cookie sheet full of water
  • Liquid dish soap
  • A toothpick

What to do:

Cut the foam tray or cardboard into a boat shape as shown below:

soapboat1

A good size seems to be about 2 inches long.

Dip the toothpick into the liquid soap and use the toothpick to put soap onto the sides of the notch at the back of the boat.

That’s it! Now carefully place the boat onto the surface of the water and watch it scoot across the water for several seconds – you’ve made a soap-powered boat! To demonstrate the boat again, you will need to rinse out the tray to remove any soap from the previous demonstration.

How does it work?

Soap is a surfactant – that means that it breaks down the surface tension of water.  As the surface tension is broken up, it creates enough of a force to push the lightweight boat across the surface.

MAKE IT AN EXPERIMENT

The project above is a DEMONSTRATION. To make it a true experiment, you can try to answer these questions:

  1. Does liquid soap last longer than a solid piece of soap?
  2. Does warm water work better than cold water?
  3. What materials make the best floating boat?